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Quantization condition for bound and quasibound states
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EQUINOR, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115,
Casilla de Correo 962, 1900 La Plata, Argentina

Received 30 October 1995

Abstract. We discuss a quantization condition for bound and quasibound states of separable
quantum-mechanical systems. Results for simple non-trivial models suggest that the quantization
condition gives the poles of the scattering matrix except for those coming from virtual states.

1. Introduction

Recently, we showed that the Riccati–Padé method, which had been known to yield accurate
eigenvalues and eigenfunctions for bound states of quantum-mechanical models [1–6], also
gave accurate Siegert eigenvalues [7, 8]. The most appealing feature of the method is that
the same quantization condition applies to both bound and quasibound states. Lacking a
sound proof of the validity of the method we have tested it on several examples. However,
in spite of the revealing information that they provided, we are still unable to answer some
relevant questions concerning its applicability.

The purpose of the present paper is twofold: in the first place we consider models
for which we know the exact answer, but which are not exactly solvable by means of the
Riccati–Pad́e method. In this way we expect to understand more clearly how the method
works, as well as to put to the test the conjecture that the Hankel quantization condition
arising from the Riccati–Padé method gives the poles of the scattering matrix associated
with bound, resonance and virtual states [9]. In the second place, we investigate whether
the Riccati–Pad́e method applies to tunnel resonances, which are typically broader than the
trapped state resonances treated previously [7, 8], but essentially of the same nature [10, 11].
In fact, one can transform a tunnel resonance into a trapped state resonance by continuous
deformation of the potential energy barrier [10, 11].

2. The method

Here, we apply the Riccati–Padé method to the second-order differential equation

Y ′′(x) = Q(x)Y (x) (1)

where either 0< x < ∞ or −∞ < x < ∞. We assume thatQ(x) can be expanded about
x = 0 (or about any other conveniently chosen point) in any of the following three forms:

Case A

Q(x) =
∞∑

j=−2

Qjx
j 0 < x < ∞ (2)
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Case B

Q(x) =
∞∑

j=0

Qjx
2j − ∞ < x < ∞ (3)

Case C

Q(x) =
∞∑

j=0

Qjx
j − ∞ < x < ∞ (4)

which, for convenience, we treat separately.
The Riccati–Pad́e method is based on the regularized logarithmic derivative of the

solutionY (x),

f (x) = s

x
− Y ′(x)

Y (x)
(5)

wheres is chosen to makef (x) non-singular atx = 0. This function is a solution of the
Riccati equation

f ′ = f 2 − 2s

x
f + s(s − 1)

x2
− Q. (6)

In case A we chooses andf0 such thats(s − 1) = Q−2 and 2sf0 = −Q−1.
Taking into account thatf (x) is analytic atx = 0, we look for a solution of (6) in the

form of a Taylor series, writing

f (x) =
∞∑

j=0

fjx
j (7)

for cases A and C, and

f (x) =
∞∑

j=0

fjx
2j+1 (8)

for case B. One easily obtains the Taylor coefficientsfj from the expansion of the Riccati
equation (6).

The Schr̈odinger equation for one-dimensional and central field models is a particular
case of (1) withQ(x) = V (x) + l(l + 1)/x2 − E, where V (x) is the potential-energy
function, andE is the total energy. In the one-dimensional casel(l+1) = 0, whereas in the
central-field casel = 0, 1, . . . is the angular-momentum quantum number and, in both of
them,s = l + 1. For symmetric one-dimensional potentialss = 0(l = −1) or s = 1(l = 0)

correspond to even or odd states, respectively.
For the harmonic oscillator, hydrogen atom, and other exactly and quasi exactly solvable

modelsf (x) is a rational function. In the Riccati–Padé method we go a step further and
suppose that a Padé approximant [1–8]

[M/N ](x) =
∑M

j=0 ajx
j∑N

j=0 bjxj
(9)

is a reasonable approximation tof (x) for non-trivial problems. The natural expansion
variable for a symmetric one-dimensional potential isx2 and, in such a case, we therefore
construct the approximantx[M/N ](x2) [1–8].

In order to determine the energyE (for example, for case A) we require that

[M/N ](x) =
M+N+1∑

j=0

fjx
j + O(xM+N+2) (10)
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which one easily rewrites as a set ofM + N + 2 equations to be satisfied by the same
number of unknownsaj andbj . There is a non-trivial solution provided thatE is a root of
the Hankel determinant [1–8]

Hd
D(E) =

∣∣∣∣∣∣∣∣
fd+1 fd+2 . . . fD+d

fd+2 fd+3 . . . fD+d+1
. . .

fD+d fD+d+1 . . . f2D+d−1

∣∣∣∣∣∣∣∣ = 0 (11)

of dimensionD = N + 1 and displacementd = M − N . The Taylor coefficientsfj , and
consequently the Hankel determinants, are polynomial functions ofE which is the only
unknown.

If the one-dimensional potential is asymmetric there are two unknowns:E and f0

which we determine by means of two conditions like (11) [2]. A recent improvement in
this approach is based on the separate treatment of the even and odd parts of the Taylor
expansion (7) [12]. For the sake of clarity, in this paper we restrict ourselves to the
determination of only one unknown parameter.

It is worth noticing that the Riccati–Padé method allows for complex rotation of the
coordinate because the Taylor expansion forf (x) is by no means restricted to real values of
x. Important consequences emerge from this fact. Consider, for example, the Hamiltonian
operator

H = − d2

dx2
+ V (x) (12)

and rotate the coordinate in the complex plane according tox = qeiθ , where bothq andθ

are real. One obtains

e2iθH = − d2

dq2
+ e2iθV (qeiθ ). (13)

If e2iθV (qeiθ ) is real for some value ofθ between 0 and 2π , then bothE and e2iθE may
be roots of the same Hankel determinant. That is to say, one may obtain the eigenvalues
of more than one problem from the same sequence of Hankel determinants.

In the present investigation we obtain the Hankel determinants analytically by means
of a symbolic processor, and calculate their roots numerically with a Newton–Raphson
algorithm exploiting the almost unlimited precision provided by the software. In this way,
we expect to rule out the possibility of round-off errors. The Hankel determinants are rich
in all kinds of roots. We call spurious those that are unstable under change of dimension,
and meaningful those that appear to converge asD increases. The latter may be further
subdivided into physical and unphysical. Physical sequences of roots give the eigenvalues
of the chosen problem. The velocity of convergence of the sequences of roots depends just
slightly on d; therefore, unless stated otherwise it must be assumed thatd = 0.

3. The Airy equation

As a first example we consider the Airy equation

Y ′′(x) = xY (x). (14)

This problem is interesting as it resembles the Schrödinger equation for the field operator,
which has proved helpful to understand the effect of complex rotation of the coordinate on
the spectrum of the Stark effect in hydrogen [13]. Here, the only unknown parameter is
f0 = −Y ′(0)/Y (0) and we chooses = 0 assuming thatY (0) 6= 0.
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In table 1 we show that a sequence of real roots of the Hankel determinants converges
rapidly towards

f (0) = −Ai ′(0)

Ai(0)
= 31/30(2/3)

0(1/3)
. (15)

For this particular value off0 the solution of the Airy equationY (x) = Ai(x) is square
integrable in(0, ∞). The rootf0 = −Bi′(0)/Bi(0), which would have led to an unbound
solution, does not appear in the Hankel determinants.

Table 1. Sequence of real roots of the Hankel determinants for the Airy equation.

D Root

2 0.721
3 0.728 91
4 0.729 010
5 0.729 011 12
6 0.729 011 132 8
7 0.729 011 132 945
8 0.729 011 132 947 21
9 0.729 011 132 947 226 8

10 0.729 011 132 947 226 979
11 0.729 011 132 947 226 981 39
12 0.729 011 132 947 226 981 418 4
13 0.729 011 132 947 226 981 418 634
14 0.729 011 132 947 226 981 418 636 24
15 0.729 011 132 947 226 981 418 636 264
16 0.729 011 132 947 226 981 418 636 264 701

Exact 0.729 011 132 947 226 981 418 636 264 700

Table 2 shows a sequence of complex conjugate roots converging towards

f (0) = −Ai ′(0) ± iBi ′(0)

Ai(0) ± iBi(0)
= 31/3 ∓ 35/6i

1 ± 31/2i

0(2/3)

0(1/3)
(16)

which correspond to purely incoming or outgoing waves.
This example suggests that the Hankel quantization condition determines solutions with

an asymptotic exponential behaviour commonly related to poles of the scattering matrix
[9, 14]. Notice that nowhere in this application have we exploited the fact that the solutions
of (14) can be exactly expressed in terms of Airy functions, except for the interpretation
of the results. The Riccati–Padé method does not give the exact values off0 for a finite
determinant dimension because the logarithmic derivative ofY (x) is not a rational function.
However, according to tables 1 and 2 such a representation becomes increasingly accurate
asD increases.

4. Exactly solvable potential wells and barriers

The time-independent Schrödinger equation with the symmetric potential

V (x) = V0 sech(x)2 (17)

is exactly solvable for bothV0 < 0 (potential well) andV0 > 0 (potential barrier) [15]. In
appropriate units it is of the form (1) withQ(x) = V (x) − E. Since the exact treatment is
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Table 2. Sequences of complex conjugate roots of the Hankel determinants for the Airy equation.

D Re (f0) | Im(f0)|
2 −0.361 0.62
3 −0.364 45 0.631 25
4 −0.364 505 0 0.631 341
5 −0.364 505 559 0.631 342 15
6 −0.364 505 566 4 0.631 342 160 6
7 −0.364 505 566 473 0.631 342 160 772
8 −0.364 505 566 473 60 0.631 342 160 773 96
9 −0.364 505 566 473 613 0.631 342 160 773 973

10 −0.364 505 566 473 613 490 0.631 342 160 773 973 329
11 −0.364 505 566 473 613 490 70 0.631 342 160 773 973 330 90
12 −0.364 505 566 473 613 490 709 2 0.631 342 160 773 973 330 920 1
13 −0.364 505 566 473 613 490 709 317 0.631 342 160 773 973 330 920 35
14 −0.364 505 566 473 613 490 709 318 1 0.631 342 160 773 973 330 920 35
15 −0.364 505 566 473 613 490 709 318 132 8 0.631 342 160 773 973 330 920 35
16 −0.364 505 566 473 613 490 709 318 132 350 0.631 342 160 773 973 330 920 35

Exact −0.364 505 566 473 613 490 709 318 132 350 0.631 342 160 773 973 330 920 35

not based on an expansion in the variablex, then the Riccati–Padé method will not give an
exact result for a finite value ofD.

When V0 < 0 the potential (17) supports at least one bound state with energy
V0 < E < 0, and the spectrum is continuous for allE > 0. The discrete spectrum is
given by the well known expression [15]

En = −
(
n + 1

2 − 1
2

√
1 − 4V0

)2
n = 0, 1, . . . < 1

2

√
1 − 4V0 − 1

2. (18)

Before proceeding with the treatment of this model, notice that the change of variable
x = iq transforms the Schrödinger equation with the potential (17) into

Y ′′(q) + (V0 sec(q)2 − E)Y (q) = 0. (19)

The poles of sec(q)2 at−π/2 andπ/2 force the boundary conditionsY (−π/2) = Y (π/2) =
0 which result in the discrete spectrum

En = −
(
n + 1

2 + 1
2

√
1 − 4V0

)2
n = 0, 1, . . . . (20)

According to the argument given earlier, the Riccati–Padé method should yield the
eigenvalues (20) in addition to (18).

Table 3 illustrates the convergence of the method for three eigenvalues withs = 0
(even solutions) whenV0 = −20. The eigenvalueE = −25 follows from (20) whenn = 0
and is below the minimum of the potential well (17). In this case the Hankel quantization
condition determines the square integrable solutions of two eigenvalue problems with quite
different potential energy functions and boundary conditions.

We now consider a potential barrier of the form (17)(V0 > 0). In this first application
of the Riccati–Pad́e method to barrier penetration, we show that the Hankel quantization
condition already gives tunnel resonances. They are broader than trapped state resonances
but both are poles of the scattering matrix [10, 11]. Tunnel resonances play a relevant role
in the transition-state theory of chemical reactions (as well as in many fields of theoretical
physics) and, therefore, there is a great interest in their accurate location [10, 11]. They
are associated with solutions of the Schrödinger equation that behave asymptotically as
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Table 3. Roots of the Hankel determinants forV (x) = −20 sech(x)2.

D Root 1 Root 2 Root 3

2 −24.9995 −15.9996
3 −24.999 999 94 −15.999 999 9 −4.02
4 −24.999 999 999 997 −15.999 999 999 98 −3.999
5 −25.000 000 000 000 0−16.000 000 000 000 0−3.999 98
6 −3.999 999 7
7 −4.000 000 001

Exact −25 −16 −4

outgoing waves in all channels. From the asymptotic behaviour of the exact eigenfunctions
for the simple two-channel model considered here, [15] one obtains

En = −4(n ± γ )2 − 4
(
n ± γ + 1

2

)2
γ = 1

4(
√

1 − 4V0 − 1)

n = 0, 1, 2, . . . . (21)

Table 4 shows sequences of roots of the Hankel determinants fors = 0 converging rapidly
towards the first three even exact resonances (21) whenV0 = 20. The accuracy is similar
when s = 1. This example shows that the Riccati–Padé method yields the poles of the
scattering matrix corresponding to tunnel resonances.

Table 4. Tunnel resonances withs = 0 for the potential barrier 20 sech(x)2.

D Re (E) | Im(E)|
2 19.4996 4.444 05
3 19.500 000 08 4.444 097 188

13.47 20.20
4 19.499 999 999 996 4.444 097 208 66

13.5001 22.220 52
5 19.499 999 999 999 999 91 4.444 097 208 657 794 1

13.499 999 7 22.220 486 05
−0.49 39.999

6 19.500 000 000 000 000 000 4.444 097 208 657 794 425 0
13.499 999 999 22.220 486 041
−0.500 04 39.996 88

7 19.500 000 000 000 000 000 4.444 097 208 657 794 425 0
13.500 000 000 002 22.220 486 043 228 0
−0.499 999 95 39.996 874 7

8 19.500 000 000 000 000 000 4.444 097 208 657 794 425 0
13.500 000 000 000 000 3 22.220 486 043 288 973
−0.499 999 997 39.996 874 88

9 19.500 000 000 000 000 000 4.444 097 208 657 794 425 0
13.499 999 999 999 999 999 8 22.220 486 043 288 972 125
−0.500 000 000 002 39.996 874 877 93

Exact 19.5 4.444 097 208 657 794 425 2
13.5 22.220 486 043 288 972 125
−0.5 39.996 874 877 920 149 825
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5. Gaussian potential

Although the time-independent Schrödinger equation with the Gaussian potential-energy
function

V (x) = A exp(αx2) (22)

is not exactly solvable, it nonetheless serves as another illustrative example. ChoosingA

andα conveniently, we construct different quantum-mechanical models. WhenA > 0 and
α > 0 we have an infinite well with discrete spectrum for allE > A. If A < 0 and
α < 0 the well is finite and the spectrum is discrete forA < E < 0 and continuous for
all E > 0. We obtain a potential barrier whenA > 0 andα < 0. The complex rotation
x = iq transforms the infinite well into the finite well with an overall change of sign that
affects the energy. The same change of variable transforms the positive potential barrier
into a negative infinite barrier.

For A = −20 andα = −0.1 the first two sequences of roots converge rapidly towards
E0 = −18.623 389 159 621 andE′ = −21.451 597 044 425 whens = 0. The former is
the energy of the ground state, but the latter is not an eigenvalue of this model as it lies
below the minimum of the potential well. By means of the Riccati–Hill [16] method we
verified that−E′ is already the ground state of the infinite well withA = 20 andα = 0.1, in
agreement with the complex rotation argument given above. The application of the Riccati–
Pad́e approach to the finite and infinite wells produces exactly the same sequences, except
for a change of sign.

Table 5 shows pairs of tunnel resonances for the Gaussian barrier. The imaginary parts
satisfy the harmonic relation Im(E1)/ Im(E0) = 3 [11] quite accurately for the potential
parameters chosen here. The reason for this behaviour is that the ratio|α/A| is sufficiently
small in all those cases for the barrier to approach an inverted parabola near the top. We are
not aware of previous results for the Gaussian potential barrier which we can compare with
ours. We have already verified that the Hankel quantization condition yields sufficiently
accurate results for most practical purposes for a class of modified or distorted Eckart
potential barriers, to which other approaches have been applied [10, 11]. We do not show
those results here because they add no valuable information to the present discussion.

Table 5. Resonances for the Gaussian potential barrierV (x) = A exp(αx2).

A α s D Re (E) | Im(E)|
20 −0.1 0 5 19.962 493 226 9 1.414 324 909 94

1 19.812 631 666 3 4.245 396 057
20 −1 0 6 19.624 381 853 2 4.475 895 025 4

1 18.137 947 130 13.501 547 305

6. Some baffling results

The results above suggest that the Hankel quantization condition yields at least those poles
of the scattering matrix associated with bound states and resonances. When the method
fails to apply to a given problem we expect to obtain no convergent sequence. In our
extensive numerical investigation we have found only two cases for which the Riccati–Padé
method appears to give wrong answers. Although we do not understand the reasons for
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such atypical behaviour, we discuss those examples here because we believe that they may
sometime shed light on the Hankel quantization condition.

Consider the dimensionless Schrödinger equationY ′′(x) = [V (x) − E]Y (x) with the
exponential potential

V (x) = A exp(αx) (23)

and the boundary conditionY (0) = 0 (for example, a central-field model withl = 0).
Notice that the net effect of the change of variablesx = −q is the substitution of−α for
α. The main reason for choosing this model is that one easily obtains the poles of the
scattering matrix from the roots of the Bessel functionsJν(z) [17].

When bothA and α are negative, the potential (23) may support bound and virtual
states. One easily obtains them from the roots ofJν(a) = 0 in which ν = −2

√−E/α

and a = −2
√−A/α. A straightforward calculation shows thatE0 = −6.747 262 496 34,

E1 = −1.475 430 809 56, andEν = −0.705 423 127 1546 are respectively the first two
bound states and the first virtual state whenA = −20.25 andα = −1 [18]. The Hankel
determinantH 0

12 givesE0 up to the last digit, whereas for the first excited state we estimate
E1 = −1.4754. The accuracy of the Riccati–Padé method is known to decrease with
the number of zeros of the solution [1–8], and for the attractive exponential potential this
deterioration is particularly noticeable. We could not obtain the virtual state from the
determinantsH 0

D and H 1
D, not even by forcing the rational approximation to satisfy the

appropriate asymptotic behaviourf (x → ∞) = k. The latter is not surprising because
previous use of two-point Padé approximants yielded just slightly better results than the
simpler and more economical Hankel quantization condition (11) [6].

WhenA > 0 andα < 0 there are only virtual states. Following other authors we choose
A = 1 andα = −2/3 [18, 19]. Table 6 shows two sequences of roots rapidly converging
towards values ofE suspiciously close, but not exactly equal, to the virtual states obtained
from the roots of the Bessel function. What is even more surprising is that the sequences
originated in Hankel determinants withd = 1 converge towards the same limits, and that
forcing the boundary condition of a purely outgoing wavef (x → ∞) = −ik does not
modify the results in any substantial way. Also notice that one of the virtual states agrees
with the exact result more closely than the other. We must therefore conclude that the
Riccati–Pad́e method does not apply to virtual states, and, consequently, that the roots of
the Hankel determinants do not give all the poles of the scattering matrix.

As a further test of the Riccati–Padé method we searched for positive roots of the
Hankel determinants for the example just discussed. According to the argument above
based on the change of variables, those roots should give the eigenvalues supported by
V (x) = exp(2x/3). Table 7 shows that the first two sequences of roots converge rapidly
towards the values ofE obtained with the Riccati–Hill method [16]. The Riccati–Padé
results are more accurate than the Riccati–Hill ones which have been obtained by floating-
point arithmetic.

As a final example we choose a symmetric potential which we have already treated
before by means of the Riccati–Padé method [7]:

V (x) = (x2 − 2J ) exp(−λx2) + 2J J, λ > 0, −∞ < x < ∞. (24)

Other authors have also selected it to test methods for the calculation of resonances [20–22].
This potential-energy function supports bound states and resonances if the parameters are
conveniently chosen. For example, there is only one bound state whenJ = 0.8 andλ = 0.1
[20, 22]. In a previous application of the Riccati–Padé method, the Hankel quantization
condition gave considerably accurate resonances but something surprising happened when
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Table 6. Virtual states for the repulsive exponential potentialV (x) = exp(−2x/3).

D Re (E) | Im(E)|
4 −0.269 −0.810

−2. −1.
6 −0.269 10 −0.808 97

−1.61 −0.44
8 −0.269 100 5 −0.808 964 87

−1.616 −0.4335
10 −0.269 100 604 −0.808 964 877

−1.615 487 9 −0.433 467 4
12 −0.269 100 603 6 −0.808 964 877 86

−1.615 488 1 −0.433 467 86

Exact −0.269 092 170 398 522−0.808 964 705 921 66
−1.625 261 409 063 81 −0.435 052 262 076 78

Table 7. Eigenvalues for the potentialV (x) = exp(2x/3).

D E0 E1

4 3.679
6 3.678 346 6.95
8 3.678 347 464 6.932 86

10 3.678 347 460 6 6.932 893 3
12 3.678 347 460 449 6.932 893 130 5

Riccati–Hill 3.678 347 460 4 6.932 893 13

searching for the bound state [7]. The first terms of the sequence of roots appeared to
converge towards the bound-state energy reported by other authors [20, 22], but beyond
some value ofD the Newton–Raphson algorithm became oscillatory. The addition of a
small imaginary part to the initial guess removed the oscillations and gave rise to a new
sequence that appeared to converge towards a complex value ofE. The imaginary part
was considerably smaller than the real part but still large enough for the precision of our
calculation. Moreover, the agreement between the limits of the sequences ford = 0 and
d = 1 also ruled out the possibility of numerical errors. Table 8 shows the real and complex
roots of the Hankel determinants in the neighbourhood of the bound-state eigenvalue for
some values ofD and d. Commonly, the number of roots in the vicinity of the physical
eigenvalue increases withD in such a way that one can rearrange them into more than
one sequence converging towards the same limit [1–8]. This is the first time that we find
a complex convergent sequence in the neighbourhood of a bound-state eigenvalue. What
is even more surprising is that the complex sequence behaves as the primary sequence
converging more rapidly and smoothly than the real one, as shown in table 8. Because
we were unable to obtain sufficiently accurate results from the Riccati–Hill method for
this problem, we calculated the ground-state energy by means of numerical integration.
The result shown in table 8 is remarkably close to the real part of the converged complex
sequence but the agreement is not complete. At present we are unable to explain this
atypical behaviour of the Riccati–Padé method or the meaning of the complex root. From
the roots of∂Hd

D/∂E we obtain a smoothly convergent real sequence, complex roots begin
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to appear at values ofD > 9, and the Newton–Raphson algorithm is stable.

Table 8. Roots of the Hankel determinants about the bound state supported byV (x) =
(x2 − 2J ) exp(−λx2) + 2J whenJ = 0.8 andλ = 0.1.

D d Re (E) | Im(E)| × 108

2 0 1.0039
3 0 1.004 080 71
4 0 1.004 080 695
5 0 1.004 081 745

0 1.004 080 732 0.26
6 0 1.004 080 707

0 1.004 080 726 0.293
7 0 1.004 082 751 82

0 1.004 080 726 31 0.295
1 1.004 080 726 301 0.2937

8 0 1.004 080 717
0 1.004 080 726 301 0.2931
1 1.004 080 725 08
1 1.004 080 726 301 4 0.293 45

9 0 1.004 080 726 301 57 0.293 46
1 1.004 080 726 301 53 0.293 48

Numerical
integration 1.004 080 724 283 934 430 140

7. Conclusions

Throughout this paper we have investigated the conjecture that the Riccati–Padé method
gives the poles of the scattering matrix. In general, this seems to be the case for bound
states and resonances, but the method has failed to give virtual states correctly. It seems
that the Hankel quantization condition does not apply to virtual states, although in the case
considered above the limits of the sequences of roots lie curiously close to the correct
answers.

The occurrence of a convergent sequence of complex roots where one expects discrete
spectrum, even when the imaginary part is comparatively small, suggests that the method
may occasionally give wrong answers for bound states.

At present we are unable to explain these (in our opinion fascinating) facts or to give
a rigorous proof of the validity of the Riccati–Padé method. However, we believe that the
present numerical investigation is quite revealing. In particular, the treatment of the Airy
equation clearly shows that the Hankel quantization condition already determines square
integrable solutions and purely outgoing and incoming waves. It is therefore suitable for
the determination of the energies of bound and quasibound states.

A novel contribution of this paper is the promising fact that the Riccati–Padé method
applies to tunnel resonances. This finding is not surprising if one takes into account
the results of previous investigations showing that the Riccati–Padé method yields broad
resonances accurately [7, 8]. Tunnel resonances are a subject of current interest because of
their relevant role in the transition-state theory of chemical reactions [10, 11].

In our opinion, it is quite uncommon that a simple and straightforward quantization
condition, like the one in the present method, applies to such a wide variety of quite
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dissimilar situations. Other approaches tailored for bound states require some kind of
modification to be applicable to resonances. In addition, the underlying theory of the
Riccati–Pad́e method is remarkably simple. We believe that these features make the Riccati–
Pad́e method a useful tool (at least as a complement of other approaches), and justify further
investigation to find out its range of applicability rigorously.

The two main weaknesses of the Riccati–Padé method in its present form are that
the accuracy of the results decrease with the number of nodes of the solution and that
the approach described here does not apply to nonseparable problems. In principle, to
overcome the former one simply chooses determinants of sufficiently higher dimension.
However, in such a case it is unlikely that one can continue analytical calculations that
require comparatively huge computer memory, and well designed floating-point algorithms
may be preferable. With respect to the second weakness mentioned above, we are presently
working on two different ways of extending the method to coupled channel equations. One
of them rests on the fact that in this more complex case the logarithmic derivative of the
solution also satisfies a matrix Riccati equation. A simpler though possibly more restrictive
approach is the treatment of the off-diagonal terms as a perturbation.
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